Hybrid technology from Porsche and Bosch

With the 918 Spyder, the Panamera S E-Hybrid and the Cayenne S E-Hybrid, Porsche was the first car manufacturer in the world to offer three plug-in hybrid models. Among the suppliers Porsche relies on for the innovative drive system is Bosch. The possibilities offered by the combination of an internal combustion engine and an electric motor will impressively be demonstrated by the Porsche hybrid vehicles at the 62nd International Automotive Press Briefing at the Boxberg test track, starting May 19.

“We promised to redefine driving pleasure, efficiency and performance with the 918 Spyder. We kept our word, and in so doing repositioned hybrid technology”, says Wolfgang Hatz, Member of the Executive Board – Research and Development at Porsche AG. The Porsche 918 Spyder1) was the first globally road-legal car to complete the 20.6 kilometre lap of the North Loop of the Nürburgring in less than seven minutes. At exactly six minutes and 57 seconds, this super sports car with plug-in hybrid drive beat the existing record by 14 seconds. Porsche also integrated the knowledge gained from the develop-ment of the technology demonstrator into the electrification of the rest of its model range. The Panamera S E-Hybrid2) and Cayenne S E-Hybrid3) round off the product range and make Porsche the global market leader for hybrid cars in the premium segment.

“Porsche and Bosch have teamed up to bring electrification to electrifying sports cars together. Electricity gives added driving pleasure and efficiency”, says Dr. Rolf Bulander, Chairman of the Business Sector Mobility Solutions at Bosch. For the three plug-in models made by Porsche, Bosch supplies the power electronics, the battery pack, the electric motors for the Cayenne and Panamera and the electric motor installed on the front axle of the 918 Spyder.

918 Spyder: a unique combination of performance and efficiency
The project definition for the 918 Spyder’s development team was to build the super sports car for the next decade with a highly efficient and high performance hybrid drive. The completely new development, which logically started from scratch on a blank piece of paper, allows a new concept without having to make any concessions. The whole car was designed around the hybrid drive. The 918 Spyder thus highlights the potential of hybrid drives, i.e. the simultaneous increase in efficiency and performance, without one coming at the expense of the other. Thanks to the SMG 180/120 electric motor developed by Bosch, the Porsche 918 Spyder has an additional 210 kW (286 hp) of driving power. The electric motor on the front axle of the 918 Spyder delivers a torque of 210 Nm right from the start, while the motor on the rear axle delivers 375 Nm. The result is a total system output of 652 kW (887 hp) with a maximum torque of up to 1,280 Nm, allowing the 918 Spyder to accelerate from 0 to 100 km/h in a mere 2.6 seconds. The super sports car’s fuel consumption, on the other hand, is an amazing 3.1 litres per 100 km, making it more efficient in the NEDC test than most of today’s small cars.

Panamera S E-Hybrid and Cayenne S E-Hybrid: fuel consumption of a small car
The driving experience of a sports car combined with the consumption of a small car – the Porsche Cayenne S E-Hybrid and Panamera S E-Hybrid prove that these two are not contradictory to each other. The world’s first plug-in hybrid amongst the premium SUVs with a system output of 306 kW (416 hp) achieves an NEDC fuel consumption of just 3.4 l/100 km. The plug-in hybrid model of the Porsche Gran Turismo, which also has a system output of 306 kW (416 hp) stands out thanks to its weight advantage, rear-wheel drive and low drag, giving it a fuel consumption of just 3.1 l/100 km.

In the plug-in hybrid models of the Porsche Cayenne and Panamera, Bosch’s IMG-300 electric motor provides additional electrical propulsion. It gives a boost of up to 310 Nm of additional torque and provides 70 kW (95 hp) of additional power. The central interface between the electric motor and the battery is the INVCON 2.3 module made by Bosch. The power electronics are the control centre of the electric powertrain, because the system converts the direct current stored as energy in the battery into three-phase alternating current for the electric motor and vice versa. The traction battery stores the electricity in the powertrain. It is made up of prismatic cells with an energy capacity of 9.4 kilowatt hours in the Panamera S E-Hybrid and 10.8 kilowatt hours in the Cayenne S E-Hybrid that can be fully charged from a normal household power socket in less than four hours. Using a high current power supply, the charging time is almost halved to a good two hours.

1-GS-21198 1-GS-21200

Panamera S E-Hybrid:
Panamera S E-Hybrid:

1-GS-21201 1-GS-21199

Electrification and internet in the car

Bosch is linking new technologies to gasoline and diesel

  •     Gasoline engines: 350 bar for direct injection
  •     Diesel engines: 48-volt hybrid to reduce nitrogen oxide emissions
  •     Dr. Rolf Bulander: “Bits and bytes are making cars more efficient”

Paper for download: Dr. Rolf Bulander – Powertrain optimization using a comprehensive systems approach

Lawmakers have mandated economical, low-emission vehicles. Car buyers want vehicles that are safe and that offer more convenience and engine performance. At the International Vienna Motor Symposium 2015, Bosch presented numerous innovations that meet all of these requirements. “Bosch technology is making cars more efficient, more convenient, and more fun to drive,” said Dr. Rolf Bulander, member of the board of management of Robert Bosch GmbH and chairman of the Mobility Solutions business sector. All three aspects come together in the Bosch boost recuperation system. In the New European Driving Cycle, the 48-volt hybrid can cut CO2 emissions by 7 percent (based on compact class). Thanks to its electric-supported coasting, the car offers a smoother ride and can deliver up to 150 Nm more torque on demand.

1-DS-19451-e

Connected electronic horizon: efficiency thanks to real-time data
Innovative advances will transform automotive powertrains over the next few years. “Electrification and connectivity will give a further boost to gasoline and diesel engines,” predicted Bulander. “Bits and bytes are making cars more efficient.” Electrified vehicles stand to gain tremendous benefits from connectivity. They are safer, more efficient, and more fun to drive. One example of how this works is the connected electronic horizon. In the future, this Bosch technology will supply essential traffic information about construction sites, traffic jams, and accidents in real time. From this basis, it will be possible to further improve existing functions such as start-stop coasting. At the same time, plug-in hybrids can use the system to implement a predictive operating strategy. Such technologies can cut CO2 emissions by a double-digit percentage.

1-RB-21099

Even after 2020, the vast majority of new cars will be powered by fossil fuels
In his presentation, Bulander reaffirmed that internal-combustion engines will remain the basis of efficient mobility. Even ten years from now, the vast majority of new vehicles worldwide will be powered by fossil fuels. Europe, the U.S., and China will raise the legal requirements for engine efficiency still further over that same period. Starting in 2021, the average new car in the EU will have an emissions cap of 95 g of CO2 per kilometre. Based on the current situation, advances in engine design should make it possible to achieve these values. The CO2 emissions for a gasoline engine in the subcompact class can be reduced to 85 g per kilometre, and for a diesel engine, that figure can be even lower than 70 g per kilometre. Enhanced aerodynamics and reduced rolling friction could once again lead to further improvements. Vehicles in the premium class and SUVs will need additional electrification.

1-BBM-21151

Engineering turns its attention to real driving emissions
In addition to current emission regulations, engineers are increasingly focusing on real driving emissions. The European Union is discussing whether to introduce real driving emission tests starting in 2017. This measuring method for diesel cars concentrates primarily on the emissions of nitrogen oxides and carbon monoxide in real-life driving situations. For cars with gasoline direct injection, the focus is on the level of particulates emitted. A number of vehicles currently in production already expel an extremely low amount of emissions – for example, during rapid acceleration or at high speeds. Now it’s time to drive the spread of this capability and develop cost-effective technologies that will ensure compliance, whatever the driving conditions. Bosch presented several approaches at the International Vienna Motor Symposium that support this endeavor. Bulander put special emphasis on interlinking the domains of electrification, automation, and connectivity: “Bosch pools these aspects in the vehicle and creates ideal systems,” he said.

One example of this approach is the innovative direct injection system with laser-drilled spray holes in gasoline engines. The holes’ precise edges swirl the fuel in the combustion chamber in such a way that it burns extremely efficiently. Increasing the injection pressure from 200 to 350 bar cuts particulate emissions to an even greater extent – especially under high load points and dynamic engine operation. Bosch debuted this refined version of its gasoline direct injection system at the Vienna Motor Symposium.

In diesel engines, electrification reduces nitrogen oxide emissions right in the engine, making exhaust gas treatment still more efficient. Bulander demonstrated this by presenting Bosch’s new 48-volt boost recuperation system. Through the judicious application of boosts, the system can markedly reduce untreated nitrogen oxide emissions, especially at high loads or when the car is accelerating. The crucial factor here is that this effect cuts emissions directly at the point of combustion by up to 20 percent. This has the effect of significantly lowering exhaust pipe emissions: Bosch believes the system could allow the storage catalytic converter to reduce nitrogen oxide emissions by up to 80 percent. Electrification will also increase the level of efficiency for urea-based systems as well (SCR catalytic converters). These exhaust gas treatment applications consume much less AdBlue, which means the fluid doesn’t need to be refilled as often.

(Source: Bosch Media)

Stereo video camera

Bosch makes emergency braking possible using just a video sensor

Standard feature in the Land Rover Discovery Sport

  • Bosch stereo video camera: single-sensor solution for assistance systems
  • Thanks to its stereo video camera, the Land Rover Discovery Sport received one of the top Euro NCAP test results in the “safety assist” category
  • Bosch’s solution is the smallest stereo video camera for automotive applications currently on the market
  • Stereo video camera meets ASIL B safety standard according to ISO 26262

Emergency braking systems are among the most effective assistance systems in the car. In Germany alone, up to 72 percent of all rear-end collisions resulting in personal injury could be avoided if all vehicles were equipped with them. Now Bosch has developed a stereo video camera with which an emergency braking system can function based solely on camera data. Normally, this would require a radar sensor or a combination of radar and video sensors. “The Bosch stereo video camera is a single-sensor solution that makes various assistance functions affordable for all vehicle classes,” says Dr. Dirk Hoheisel, who sits on the Bosch board of management. Land Rover offers the stereo video camera together with the Bosch emergency braking system as standard in its new Discovery Sport. This system was developed in intensive and close collaboration between Bosch and Land Rover.

When the camera recognizes another vehicle ahead in the lane as an obstruction, the emergency braking system prepares for action. If the driver does not react, then the system initiates maximum braking. The Discovery Sport proved how effective the function is in a Euro NCAP test: it was rated as “good” in the AEB city and AEB interurban categories. Overall, the Discovery Sport passed the test with five stars and achieved one of the best results in the “safety assist” category for 2014. To earn a top score from Euro NCAP in 2016 and beyond, cars must be equipped with predictive pedestrian protection. This can also be based on the stereo video camera. The Discovery Sport has also been awarded the What Car? Car of the Year Safety Award 2015 in the U.K.

Bosch has developed a stereo video camera with which an emergency braking system can function based solely on camera data. Land Rover offers the stereo video camera together with the Bosch emergency braking system as standard in its new Discovery Sport.
Bosch has developed a stereo video camera with which an emergency braking system can function based solely on camera data. Land Rover offers the stereo video camera together with the Bosch emergency
braking system as standard in its new Discovery Sport.

Important building block for automated driving Besides the emergency braking system, the new Land Rover Discovery Sport offers other driver assistance functions, some of which are also based on the Bosch stereo video camera. One such function is road-sign recognition, which keeps the driver informed about the current speed limit. Another is a lane-departure warning system. This vibrates the steering wheel of the Discovery Sport to warn drivers before they unintentionally drift out of lane.

The Bosch stereo video camera sets new technical standards. With its light-sensitive lenses and video sensors, the camera covers a 50-degree horizontal field of vision and can take measurements in 3D at a distance of over 50 meters. Thanks to these spatial measurements, the video signal alone provides enough data to calculate, for example, the distance to vehicles ahead. “The Bosch stereo video camera and its 3D imaging capability are also an important building block for automated driving,” says Hoheisel.  Its pair of highly sensitive video sensors are equipped with colour recognition and CMOS (complementary metal oxide semiconductor) technology. They have a resolution of 1,280 by 960 pixels and can also process high-contrast images. The camera’s high-performance computer makes it possible to integrate other measuring programs and functions and respond flexibly to market requirements.

1-CC-21084
Bosch developed the entire stereo video camera in house from start to finish and it sets new technical standards. The distance between the optical axes of the lenses is just twelve centimetres, making this the smallest system of its kind currently available in the field of automotive applications. Thanks to the spatial measurements, the video signal alone provides enough data to calculate, for example, the distance to vehicles ahead.

The smallest stereo video camera currently on the market One of the biggest advantages offered by the Bosch stereo video camera is its compact design. The distance between the optical axes of the lenses is just twelve centimetres, making this the smallest system of its kind currently available in the field of automotive applications. What’s more, the Bosch developers have integrated the control unit for image processing and function control directly into the camera housing. That means vehicle manufacturers can integrate the camera into the rear view mirror especially easily, impeding the field of vision only slightly.

1-CC-21085
When the camera recognizes another vehicle ahead in the lane as an obstruction, the emergency braking system prepares for action. If the driver does not react, then the system initiates maximum braking.

“We’re pleased to say that Bosch developed the entire stereo video camera in house from start to finish,” says Hoheisel. As a result, all components, from hardware to image processing to the functions, are designed to work together seamlessly. The Bosch camera also meets the stringent ASIL B safety requirement according to ISO 26262, which is relevant for safety-related emergency braking. In addition, automotive manufacturers can flexibly adapt the range of camera functions as they choose.

(Source: Bosch Media)

Energy Storage for a Sustainable Home

Powerwall

Tesla Home Battery

Powerwall is a home battery that charges using electricity generated from solar panels, or when utility rates are low, and powers your home in the evening. It also fortifies your home against power outages by providing a backup electricity supply. Automated, compact and simple to install, Powerwall offers independence from the utility grid and the security of an emergency backup.

I need one of these now!