Navigation supporting the new NDS data standard

Bosch guides you through 3D landscapes with Navigation 3.0

  • 3D m ap engine displays 3D elements on additional display layer
  • High-quality display with 3D objects also available offline
  • Level of display detail adaptable to system computing power and memory

Future visualization of dynamic information, like danger spots and fuel prices

Bosch is making the map display on built-in navigation systems even more engaging and relevant. Buildings extend skyward, enabling you to get your bearings more easily, and visible changes in terrain height combined with integrated satellite imagery produce an almost photorealistic look. This is made possible by Bosch’s advanced navigation software, which takes data compliant with the new Navigation Data Standard (NDS) and processes it in a 3D rendering module to turn it into a visually stunning map. In contrast to comparable solutions, it is possible to use the Bosch approach on navigation systems that are not permanently online. If an internet connection is available, though, the system can enhance the map display with dynamic data. In the future, this will allow, for instance, integration of the latest weather information or fuel prices at gas stations along the route.

1-CM-21952

Powerful 3D map engine supports continuous zoom

The key component in Bosch’s new navigation software is a 3D map engine based on OpenSceneGraph. It superimposes three-dimensional elements like buildings using an additional display layer and can also make them transparent, keeping the route visible to the driver when it goes behind structures. The driver can smoothly zoom the visible map area, from the highest level of detail to the world view. Using topographical information contained in the NDS data, the software displays differences in terrain height. It will even be possible to artificially bend up the map in the direction of the horizon, thus maximizing the amount of screen area used to display the route. The new software furthermore supports the 3D artMap function, which rounds the edges of buildings and uses appropriate colouring to give the structures a watercolour look.

For interacting with the system, the driver can choose between voice input, multi-touch, and handwriting recognition. And thanks to the 3D map engine, it is also possible to show different areas of the map on different screens at the same time, such as the displays in the centre console and instrument cluster. The level of display detail can be adapted to the infotainment system’s computing power and memory. The navigation software can thus be configured to suit carmakers’ particular requirements. Updates are easy to install via USB media or a connected smartphone.

Dynamic data from the connected horizon – more than just traffic info

1-CM-21951

Today, traffic congestion can already be portrayed on the map in near real time. But if the infotainment system has internet access, it will be possible in the future to integrate even more information in the map display. The Bosch connected horizon, for example, gives real-time access to data on road conditions stored in the cloud. The 3D map engine is able to visualize this data, so that areas of the map appear in a different colour if there is particularly heavy rain or a risk of black ice. By simply tracing a circle on the screen with your finger, you can then tell the system to calculate an alternative route going through the point you just defined. Regional temperatures and the expected path of severe storms can also be displayed – an essential function in regions of the US severely affected by tornados. Furthermore, in electric vehicles, the system uses a coloured, transparent overlay to indicate the current range on the map for the amount of remaining battery charge.

The Navigation Data Standard has been jointly developed by carmakers, automotive suppliers, and map providers. The standardized format enables map data to be exchanged easily between them. Standardization reduces the number of different variants and simplifies map updating.

Further details are available at http://www.nds-association.org

(Source: Bosch Media)

Real-driving emissions (RDE)

Brussels, 19 January 2016 – Following the debate on real-driving emissions (RDE) during the plenary session of the European Parliament in Strasbourg yesterday, the European Automobile Manufacturers’ Association (ACEA) reiterates that it fully agrees with the need for emissions to more closely reflect real-world conditions.
“We urgently need to have a new test method to bridge the gap between the current laboratory testing of pollutant emissions, as defined by law, and the very different conditions experienced on the road,” said Erik Jonnaert, ACEA Secretary General. Alongside other stakeholders, ACEA has therefore been contributing constructively to the efforts of the European Commission and member states to develop a robust RDE test.

During the October meeting of the Commission’s regulatory committee (TCMV) a tough compromise was agreed on RDE with testing standards that will be extremely difficult for automobile manufacturers to reach in a short space of time, and highly challenging targets in a second step. The TCMV also agreed that the RDE conformity factor should be reviewed in the future.

“Despite the challenges in the latest proposals, the industry urgently needs clarity now so manufacturers can plan the development and design of vehicles in line with the new RDE requirements. Any delay to this legislation would leave little time to make the necessary changes and ultimately would just push back the benefits for the environment,” stated Jonnaert. “Our industry needs the RDE test to restore the confidence of consumers and legislators in the environmental performance of new vehicles.”

(Source: ACEA. www.acea.be )

Tyre/Tire pressures and mpg

In an SAE discussion group I recently came across a discussion about tyre pressures and fuel economy. Here is a reply to the question: “Has anyone done a comprehensive study on how exactly tyre pressure effects gas mileage?” A colleague in the forum replied as follows:

“Yes, I have.

for the past thirty years I have kept tire pressure set at 42 psi in my cars. There has been no significant change in the tire ‘footprint’, no effect on real world anti-lock braking, and an appreciable increase of 4-5 mpg, and increased tire life.

Back in the ’70’s, I taught an advanced diagnosis R/D course at a NJ college. Students were ready to graduate at the end of the course semester. The training facility had an in ground chassis dynamometer. Students were divided in small groups of three and were instructed to do anything they wanted to reduce road horsepower, ie.increase mpg, required to keep the vehicle rolling at a constant speed/load.

Students reduced vehicle weight, (by removing components such as seat, weighing them, then subtracting the weight via the dyno control panel), changed aerodynamics by figuring wind drag based upon frontal area and known factors, engine modification to include such things as five angle valve refacing, camshaft profile changes, etc., elimination of catalytic converters, and tire pressure. Proper research procedures were followed to ensure as accurate as possible results. Having taught this course several times with different students, vehicles, etc., there was only one vehicle change that effectively changed fuel economy, tire pressure.

Students increased tire pressure from the then specified 28-32 psi specification, a little at a time until a measureable change was found. Research was done regarding the development of the radial tire. Use of the radial tire in performance racing applications. Also research on the bias ply/radial tire, today known as emergency vehicle tires.

Vehicle mpg increased, (road hp required decreased), as the tire pressure was increased up to approximately 45 psi. Beyond that, there was no appreciable mpg increase.

Tire manufacturers informed the students that the sidewalls of a radial, being flexible, straighten out with increased tire pressure, leaving the ‘footprint’, unaffected. Also, that radial tires were originally produced and operated at 60 psi, (back in the early years, ’50’s). This was how students decided to experiment with tire pressure.

So, as a result, the tires of my cars are inflated to 42 psi and my truck tires to 55 psi. I have enjoyed the maximum mpg and tire life. Claims of poor tire life from factory tires have been negated.

[…] Hope you found this helpful. Just don’t plagiarize. Thanks” (Source: Fred Allen, retired automotive professor, 43 years , Rockport ME, USA)

What do you think about this? Fred’s experience is clear but are there any potential problems with increasing tyre pressures in this way? All sensible comments welcome!

The car of the future?

The car: the driver’s truly personal assistant Bosch car-of-the-future will experience a new kind of interaction between humans and technology. The car dashboard and central console have been transformed into an electronic display. The information shown on this giant display changes depending on the vehicle’s current surroundings. If a pedestrian approaches from the right, a lighting sequence is triggered to alert the driver. Drivers’ preferences as well as appointments in their diary are also taken into account. For example, if an appointment is cancelled, the car of the future will automatically indicate the route to the next appointment in the diary. Drivers will be able to activate the autopilot to free up even more time and make their journey more relaxed.

But tomorrow’s connected cars will also be capable of much more. With a connection to the smart home, they will enable household functions such as heating or security systems to be operated at any time. For example, should a courier attempt to deliver a package with no one at home, all it will take is the tap of a finger on the vehicle’s display to allow the courier to deposit the package inside the house and confirm receipt. Interaction with technology really will be able to take such varied forms, and offer such safety and convenience. Connected infotainment will let drivers navigate not just through the traffic but through their whole day. They will be able to use it to access online services and smartphone apps – and they will be able to control it using gestures and speech, just as if they were talking with a passenger. This will turn the car into the driver’s truly personal assistant.

1-BBM-21857

A touchscreen that feels like it has real buttons In advance of the trade show, Bosch has received a CES 2016 Innovation Award in the In-Vehicle Audio/Video category for a new touchscreen. This device can generate different surface textures, allowing elements to be felt on the display. This haptic feedback makes it easier to operate infotainment applications such as navigation, radio, and smartphone functions. Often drivers will not even need to look at the information on the screen to control it – instead, they can keep their eyes on the road. The screen generates the feel of rough, smooth, and patterned surfaces to indicate different buttons and functions; to make a selection, a button needs to be pressed more firmly. What makes this special is that the touchscreen looks no different from an ordinary display – and yet it gives users the impression that they are pressing real buttons.

1-BBM-21858

No need to fear wrong-way drivers: a guardian angel in the cloud Connectivity makes driver information more up to date than ever before. This is particularly important when it comes to wrong-way drivers. In general, it takes several minutes for radio stations to issue warnings over the airwaves, but a third of wrong-way driving incidents finish after just 500 meters. Bosch is currently developing a new cloud-based wrong-way driver alert that will let drivers know of any danger just ten seconds after it arises. As a pure software module, it can be integrated at low cost into smartphone apps such as Bosch’s myDriveAssist or existing infotainment systems. In order to detect wrong-way driving, the cloud-based function compares actual, anonymized vehicle movement on freeways with the permitted direction of travel. If there is a discrepancy, wrong-way drivers are warned of their error in a matter of seconds. At the same time, nearby cars traveling in the opposite direction are alerted to the danger. Starting in 2016, the new function will be available as a cloud service.

1-BBM-21371

The highway pilot will increase road safety from 2020 Highly automated driving will further increase the safety of road traffic. This development will come to freeways in 2020. According to forecasts made by Bosch accident researchers, increasing automation can significantly reduce accident numbers – by up to a third in Germany alone. At CES 2016, Bosch will be showcasing the systems and sensors necessary for automated journeys in another demo vehicle at the Sands Expo. Visitors will also learn how the highway pilot works, a highly automated system that assumes all the driver’s tasks and responsibilities on freeways. This technology is already being tested on public roads. Bosch is testing automated driving on freeways not only in Germany and the United States but now also in Japan.

In the future, cars will also be able to see around bends and be aware of possible danger spots, thanks to a stream of real-time information from the internet on the location of traffic jams, construction sites, and accidents. This data will serve as an electronic “connected horizon” and give cars an even better picture of what lies ahead – further increasing safety and efficiency.

1-BBM-21856

It’s up to cars, not drivers, to find a parking space Every journey ends with parking. To make this job easier, Bosch is developing a new function called automated valet parking. This solution does more than relieve drivers of the task of finding a vacant space in a parking garage: it enables cars to park themselves. Drivers can simply leave the car at the entrance to the parking garage. Using a smartphone app, they then instruct their car to find a space for itself. When ready to leave, they call the car back to the drop-off point in the same way. Fully automated parking relies on smart infrastructure in parking garages plus the vehicle’s on-board sensor systems – and connectivity for both. Sensors in the pavement provide up-to-date information on where free parking spaces are located, so cars know where to go. Bosch is developing not only the fully automated parking function but also all the necessary components in-house

The online car

The car of the future is connected. It uses up-to-the-minute information from the internet to get vehicle occupants to their destination even more safely, efficiently, and conveniently. This integration into the internet of things also unlocks a host of vehicle-related services. “Connectivity is clearly revolutionizing the way we drive,” says Dr. Dirk Hoheisel, the Bosch board of management member responsible for this area. “Bosch delivers the necessary hardware and software, and is developing a range of attractive services.” The company’s strategy is opening up business opportunities as well. This is borne out by existing studies on the internet of things, all of which indicate that there is enormous market potential in the mobility sector. Hoheisel goes on to note that “the number of services in particular will rise considerably.” Thanks to its comprehensive systems expertise and product portfolio, Bosch is already in a solid position to tap that potential. The technology company addresses all levels of the IoT with its sensors, IoT software, and a diverse range of services. And this is true not just of Bosch’s mobility business, but of all the company’s other business sectors as well.

A few weeks ago, Bosch premiered a cloud-based alert that warns drivers within ten seconds if there is a wrong-way driver approaching. The warning system, which is scheduled to go into production in 2016, is a connected lifesaver in the true sense of the word. As early as 2012, Bosch began operating an enhanced eCall service and a mobile information service on behalf of several automakers. The service provides accident assistance and also lends support on all other issues. And finally, several fleet operators are already using a connected fleet management solution that Bosch launched in 2014.

1-CM-21209

Bosch technology puts the car online
To connect the car with the internet, Bosch pursues two main approaches. First, it makes full use of the driver’s smartphone. Using the integrated mySPIN solution, drivers can link their Android and iOS devices to the vehicle’s infotainment system. Selected apps can then be conveniently operated from the vehicle’s central display. This technology has been featured in Jaguar and Land Rover models since 2014. Use of it in Asia is spreading, driven by contracts with two other automakers in China plus an alliance with the Chinese internet company Tencent.

Bosch’s second approach constitutes equipping the vehicle with connectivity hardware in the form of a connectivity control unit, or CCU. The CCU receives and transmits information using a wireless module equipped with a SIM card. It can also determine the vehicle’s position using GPS if desired. Bosch offers devices specifically adapted to cars, commercial vehicles, motorcycles, off-highway vehicles, and even railway freight cars. Just a few weeks ago, for example, Bosch won a contract to optimize the logistics processes of the Swiss rail freight operator SBB Cargo.

Connected to the vehicle’s electrical system via the OBD interface, the CCU is available both as original equipment and as a retrofit solution. This makes it possible for fleet operators to retrofit their existing vehicles as well. The Bosch subsidiary Mobility Media also markets this solution for private users under the name Drivelog Connect. A smartphone connected to the CCU can display vehicle data, offer tips on fuel-efficient driving, and, in the event of a breakdown, immediately contact a towing service and the garage if required.

1-BBM-21513

A connected car drives more proactively than any person
Information on traffic jams, black ice, and wrong-way drivers is available in the cloud. When combined with infrastructure data from parking garages and charge spots, this provides a broader perspective – the “connected horizon”. As Hoheisel puts it: “In the connected vehicle, the driver can see over the top of the next hill, around the next bend, and beyond.” Because future cars will warn drivers in plenty of time about sudden fog or about a line of cars stopped behind the next bend, driving will be safer. Connectivity also enhances vehicle efficiency. For example, precise data about traffic jams and the road ahead makes it possible to optimize charging management in hybrid and electric vehicles along the selected route. And because the car thinks ahead, the diesel particulate filter can be regenerated just before the car exits the freeway, and not in the subsequent stop-and-go traffic. Connectivity improves convenience as well, as it is a prerequisite for automated driving. It is the only way to provide unhurried braking in advance of construction zones, traffic jams, and accident scenes.

1-CM-21824

Predictive diagnostics cut service times
Along with driving data and information on the vehicle’s surroundings, the connected car also captures data on the operation of individual components. Running this data through sophisticated algorithms permits preventive diagnostics. For example, the data collected from an injection nozzle can be put through distributed algorithms in the cloud and in the vehicle in order to predict the part’s remaining service life. The driver or fleet operator can be notified immediately and an appointment made with the workshop in good time. In this way, it is often possible to avoid expensive repair and down times, especially for large commercial vehicles.

Yet connectivity doesn’t stop at the entrance to the repair shop. Mechanics can use transmitted vehicle data to price spare parts and labor much more quickly. In the future, their repairs will benefit from Bosch augmented reality solutions, which use a tablet computer to provide a sort of X-ray vision. When a mechanic takes the tablet and holds it under the hood, for example, the tablet’s camera image is overlaid with comprehensive additional information and repair instructions for precisely the area being displayed. The mechanic can manipulate the overlaid objects via the touchscreen and call up additional information. This makes poring through service handbooks a thing of the past. A Bosch server provides all the detailed data online.

(Source: Bosch Media)

Death by EV

Some automotive technicians are going to be killed by the high voltages on electric vehicles. I have written many textbooks about automotive technology where I have highlighted safe working practices, but the one I have just completed the script for will save lives. This book is called, ‘Electric and Hybrid Vehicles’, and will be out early in 2016. By the way, we use the term EV to cover all the different types there are such as hybrids and pure-EVs.

Did you know the voltages on some EVs can be several hundred volts, which is almost three time the mains voltage in our houses? The majority of EV batteries are well over 300 volts. If the human body experiences a current of just fifty thousandths of an ampere (50mA, which is not very much) for over two seconds it can be fatal.

Now that I have scared you away from ever touching high voltage components (which are all labelled and usually coloured orange) I would add that working on EVs is perfectly safe! You just need to be trained and know what you are doing. Driving an EV is also perfectly safe and don’t expect poor performance either. My EV will do well over 80 miles per hour (on a private track!) just using the battery and electric motor.

Of course as well as saving lives, the book is packed with really interesting information and technology relating to EVs. For example, whether it is safe to plug in the charging lead in the rain. How most motors on EVs are AC motors but we call them DC motors! The book even covers things like what ‘first responders’ should do if a lithium-ion battery is burning after an accident. The book covers all the requirements for the Institute of the Motor Industry (IMI) awards and accreditations for those who need a qualification. Look out for the amazing eLearning that will also be available soon to support the book.

I have also included a short case study on charging my own EV (actually a PHEV) from solar panels. This may or may not save the planet but in the meantime it does save me money as I can now do a large proportion of my motoring for about 1p a mile.

Here are three more interesting facts to finish on:

A formula-e (fully electric racing car) will accelerate from 0 to 100 kilometres per hour in under 3 seconds

  • The Tesla Model S (a fully electric car) has a range of up to 330 miles
  • In the year 1900, electrically powered cars were the best-selling road vehicles in the USA

Now back to the final proof read of the script!

Direct injection for CNG engines

Introduction

Direct injection is not only something for diesel and gasoline engines. In compressed natural gas (CNG) engines, it could also make cars even more economical and eco-friendly. Driving enjoyment would also be boosted: compared with present systems that use manifold gas injection, it could deliver as much as 60 percent more torque at low rpm, and offer the prospect of an even more dynamic driving experience in the CNG cars of the future. However, there is still no technology for directly injecting natural gas into the combustion chamber. In the Direct4Gas project, researchers now want to develop a direct injection system for monovalent engines, or engines that run exclusively on CNG.

Complying with exacting emissions standards

Even now, there are plenty of good reasons for choosing a CNG engine. The compressed natural gas used in passenger cars is inexpensive, and emissions from the vehicles (and thus also vehicle tax in many countries) are low. But this alternative fuel has much greater potential: CNG is mainly composed of methane, whose chemical composition means that cars powered by natural gas could emit far less CO2 than at present. In combination with modifications to the engine, the saving could be as much as 33 percent over a comparable gasoline-powered car. However, this all depends on combustion processes that are tailored precisely to natural gas. By 2020, newly registered vehicles in the EU will not be permitted to emit more than 95 grams of CO2 per kilometer on average. By 2025, this limit could be even lower. Efficient CNG vehicles can help meet exacting emissions standards, and this not only because they emit less CO2. Emissions of particulate matter are also significantly lower than from gasoline or diesel engines.

Gasoline direct injection points the way forward

Today’s CNG vehicles are generally bivalent, running on gasoline and CNG with engines designed for gasoline direct injection. For CNG operation, they are fitted with an additional manifold injection system for methane. “The problem with this configuration is that neither the combustion process nor the values for efficiency and emissions can be optimized. For this to happen, the CNG – like the gasoline – needs to be injected directly into the combustion chamber,” says Dr. Andreas Birkefeld, the project leader from Robert Bosch GmbH. Because methane behaves differently from gasoline when injected directly, it is important to optimize the combustion process for methane.

Direct4Gas-Infografik_EN_150908

The Direct4Gas researchers and engineers will design samples of a direct injector that satisfies much higher standards than the manifold injection valves used up to now. It will have to be especially robust, gas-tight, and reliable, and meter the CNG very precisely. Modifications to the engine itself are to be kept to a minimum, so that the industry can continue using the same components as for gasoline engines. The project team will equip experimental gas engines with the newly developed injector, and test it in the laboratory and in vehicles. Researchers will also examine mixture formation, ignition, and exhaust-gas treatment and develop specific solutions. Direct injection will also be superior to manifold injection in the low-rpm range that is so important for handling: the researchers estimate that direct injection will increase the amount of torque that can be delivered by as much as 60 percent. This would make the CNG engines of the future significantly more dynamic.

A step toward production-readiness

The long-term objective of the consortium of automotive suppliers and automakers is to create the conditions needed for making the technology ready for production, and the project is an important step toward this goal. The consortium is led by Robert Bosch GmbH. Other partners include Daimler AG and the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS). Umicore AG & Co. KG is an associated partner. Following a resolution of the German Bundestag, Direct4Gas is supported with 3.8 million euros from the Federal Ministry for Economic Affairs and Energy as part of the “Increasing vehicle powertrain efficiency” initiative. The project started in January 2015 and will run until the end of 2017.

(Source: Bosch Media)