Real-driving emissions (RDE)

Brussels, 19 January 2016 – Following the debate on real-driving emissions (RDE) during the plenary session of the European Parliament in Strasbourg yesterday, the European Automobile Manufacturers’ Association (ACEA) reiterates that it fully agrees with the need for emissions to more closely reflect real-world conditions.
“We urgently need to have a new test method to bridge the gap between the current laboratory testing of pollutant emissions, as defined by law, and the very different conditions experienced on the road,” said Erik Jonnaert, ACEA Secretary General. Alongside other stakeholders, ACEA has therefore been contributing constructively to the efforts of the European Commission and member states to develop a robust RDE test.

During the October meeting of the Commission’s regulatory committee (TCMV) a tough compromise was agreed on RDE with testing standards that will be extremely difficult for automobile manufacturers to reach in a short space of time, and highly challenging targets in a second step. The TCMV also agreed that the RDE conformity factor should be reviewed in the future.

“Despite the challenges in the latest proposals, the industry urgently needs clarity now so manufacturers can plan the development and design of vehicles in line with the new RDE requirements. Any delay to this legislation would leave little time to make the necessary changes and ultimately would just push back the benefits for the environment,” stated Jonnaert. “Our industry needs the RDE test to restore the confidence of consumers and legislators in the environmental performance of new vehicles.”

(Source: ACEA. www.acea.be )

Tyre/Tire pressures and mpg

In an SAE discussion group I recently came across a discussion about tyre pressures and fuel economy. Here is a reply to the question: “Has anyone done a comprehensive study on how exactly tyre pressure effects gas mileage?” A colleague in the forum replied as follows:

“Yes, I have.

for the past thirty years I have kept tire pressure set at 42 psi in my cars. There has been no significant change in the tire ‘footprint’, no effect on real world anti-lock braking, and an appreciable increase of 4-5 mpg, and increased tire life.

Back in the ’70’s, I taught an advanced diagnosis R/D course at a NJ college. Students were ready to graduate at the end of the course semester. The training facility had an in ground chassis dynamometer. Students were divided in small groups of three and were instructed to do anything they wanted to reduce road horsepower, ie.increase mpg, required to keep the vehicle rolling at a constant speed/load.

Students reduced vehicle weight, (by removing components such as seat, weighing them, then subtracting the weight via the dyno control panel), changed aerodynamics by figuring wind drag based upon frontal area and known factors, engine modification to include such things as five angle valve refacing, camshaft profile changes, etc., elimination of catalytic converters, and tire pressure. Proper research procedures were followed to ensure as accurate as possible results. Having taught this course several times with different students, vehicles, etc., there was only one vehicle change that effectively changed fuel economy, tire pressure.

Students increased tire pressure from the then specified 28-32 psi specification, a little at a time until a measureable change was found. Research was done regarding the development of the radial tire. Use of the radial tire in performance racing applications. Also research on the bias ply/radial tire, today known as emergency vehicle tires.

Vehicle mpg increased, (road hp required decreased), as the tire pressure was increased up to approximately 45 psi. Beyond that, there was no appreciable mpg increase.

Tire manufacturers informed the students that the sidewalls of a radial, being flexible, straighten out with increased tire pressure, leaving the ‘footprint’, unaffected. Also, that radial tires were originally produced and operated at 60 psi, (back in the early years, ’50’s). This was how students decided to experiment with tire pressure.

So, as a result, the tires of my cars are inflated to 42 psi and my truck tires to 55 psi. I have enjoyed the maximum mpg and tire life. Claims of poor tire life from factory tires have been negated.

[…] Hope you found this helpful. Just don’t plagiarize. Thanks” (Source: Fred Allen, retired automotive professor, 43 years , Rockport ME, USA)

What do you think about this? Fred’s experience is clear but are there any potential problems with increasing tyre pressures in this way? All sensible comments welcome!

The car of the future?

The car: the driver’s truly personal assistant Bosch car-of-the-future will experience a new kind of interaction between humans and technology. The car dashboard and central console have been transformed into an electronic display. The information shown on this giant display changes depending on the vehicle’s current surroundings. If a pedestrian approaches from the right, a lighting sequence is triggered to alert the driver. Drivers’ preferences as well as appointments in their diary are also taken into account. For example, if an appointment is cancelled, the car of the future will automatically indicate the route to the next appointment in the diary. Drivers will be able to activate the autopilot to free up even more time and make their journey more relaxed.

But tomorrow’s connected cars will also be capable of much more. With a connection to the smart home, they will enable household functions such as heating or security systems to be operated at any time. For example, should a courier attempt to deliver a package with no one at home, all it will take is the tap of a finger on the vehicle’s display to allow the courier to deposit the package inside the house and confirm receipt. Interaction with technology really will be able to take such varied forms, and offer such safety and convenience. Connected infotainment will let drivers navigate not just through the traffic but through their whole day. They will be able to use it to access online services and smartphone apps – and they will be able to control it using gestures and speech, just as if they were talking with a passenger. This will turn the car into the driver’s truly personal assistant.

1-BBM-21857

A touchscreen that feels like it has real buttons In advance of the trade show, Bosch has received a CES 2016 Innovation Award in the In-Vehicle Audio/Video category for a new touchscreen. This device can generate different surface textures, allowing elements to be felt on the display. This haptic feedback makes it easier to operate infotainment applications such as navigation, radio, and smartphone functions. Often drivers will not even need to look at the information on the screen to control it – instead, they can keep their eyes on the road. The screen generates the feel of rough, smooth, and patterned surfaces to indicate different buttons and functions; to make a selection, a button needs to be pressed more firmly. What makes this special is that the touchscreen looks no different from an ordinary display – and yet it gives users the impression that they are pressing real buttons.

1-BBM-21858

No need to fear wrong-way drivers: a guardian angel in the cloud Connectivity makes driver information more up to date than ever before. This is particularly important when it comes to wrong-way drivers. In general, it takes several minutes for radio stations to issue warnings over the airwaves, but a third of wrong-way driving incidents finish after just 500 meters. Bosch is currently developing a new cloud-based wrong-way driver alert that will let drivers know of any danger just ten seconds after it arises. As a pure software module, it can be integrated at low cost into smartphone apps such as Bosch’s myDriveAssist or existing infotainment systems. In order to detect wrong-way driving, the cloud-based function compares actual, anonymized vehicle movement on freeways with the permitted direction of travel. If there is a discrepancy, wrong-way drivers are warned of their error in a matter of seconds. At the same time, nearby cars traveling in the opposite direction are alerted to the danger. Starting in 2016, the new function will be available as a cloud service.

1-BBM-21371

The highway pilot will increase road safety from 2020 Highly automated driving will further increase the safety of road traffic. This development will come to freeways in 2020. According to forecasts made by Bosch accident researchers, increasing automation can significantly reduce accident numbers – by up to a third in Germany alone. At CES 2016, Bosch will be showcasing the systems and sensors necessary for automated journeys in another demo vehicle at the Sands Expo. Visitors will also learn how the highway pilot works, a highly automated system that assumes all the driver’s tasks and responsibilities on freeways. This technology is already being tested on public roads. Bosch is testing automated driving on freeways not only in Germany and the United States but now also in Japan.

In the future, cars will also be able to see around bends and be aware of possible danger spots, thanks to a stream of real-time information from the internet on the location of traffic jams, construction sites, and accidents. This data will serve as an electronic “connected horizon” and give cars an even better picture of what lies ahead – further increasing safety and efficiency.

1-BBM-21856

It’s up to cars, not drivers, to find a parking space Every journey ends with parking. To make this job easier, Bosch is developing a new function called automated valet parking. This solution does more than relieve drivers of the task of finding a vacant space in a parking garage: it enables cars to park themselves. Drivers can simply leave the car at the entrance to the parking garage. Using a smartphone app, they then instruct their car to find a space for itself. When ready to leave, they call the car back to the drop-off point in the same way. Fully automated parking relies on smart infrastructure in parking garages plus the vehicle’s on-board sensor systems – and connectivity for both. Sensors in the pavement provide up-to-date information on where free parking spaces are located, so cars know where to go. Bosch is developing not only the fully automated parking function but also all the necessary components in-house

The online car

The car of the future is connected. It uses up-to-the-minute information from the internet to get vehicle occupants to their destination even more safely, efficiently, and conveniently. This integration into the internet of things also unlocks a host of vehicle-related services. “Connectivity is clearly revolutionizing the way we drive,” says Dr. Dirk Hoheisel, the Bosch board of management member responsible for this area. “Bosch delivers the necessary hardware and software, and is developing a range of attractive services.” The company’s strategy is opening up business opportunities as well. This is borne out by existing studies on the internet of things, all of which indicate that there is enormous market potential in the mobility sector. Hoheisel goes on to note that “the number of services in particular will rise considerably.” Thanks to its comprehensive systems expertise and product portfolio, Bosch is already in a solid position to tap that potential. The technology company addresses all levels of the IoT with its sensors, IoT software, and a diverse range of services. And this is true not just of Bosch’s mobility business, but of all the company’s other business sectors as well.

A few weeks ago, Bosch premiered a cloud-based alert that warns drivers within ten seconds if there is a wrong-way driver approaching. The warning system, which is scheduled to go into production in 2016, is a connected lifesaver in the true sense of the word. As early as 2012, Bosch began operating an enhanced eCall service and a mobile information service on behalf of several automakers. The service provides accident assistance and also lends support on all other issues. And finally, several fleet operators are already using a connected fleet management solution that Bosch launched in 2014.

1-CM-21209

Bosch technology puts the car online
To connect the car with the internet, Bosch pursues two main approaches. First, it makes full use of the driver’s smartphone. Using the integrated mySPIN solution, drivers can link their Android and iOS devices to the vehicle’s infotainment system. Selected apps can then be conveniently operated from the vehicle’s central display. This technology has been featured in Jaguar and Land Rover models since 2014. Use of it in Asia is spreading, driven by contracts with two other automakers in China plus an alliance with the Chinese internet company Tencent.

Bosch’s second approach constitutes equipping the vehicle with connectivity hardware in the form of a connectivity control unit, or CCU. The CCU receives and transmits information using a wireless module equipped with a SIM card. It can also determine the vehicle’s position using GPS if desired. Bosch offers devices specifically adapted to cars, commercial vehicles, motorcycles, off-highway vehicles, and even railway freight cars. Just a few weeks ago, for example, Bosch won a contract to optimize the logistics processes of the Swiss rail freight operator SBB Cargo.

Connected to the vehicle’s electrical system via the OBD interface, the CCU is available both as original equipment and as a retrofit solution. This makes it possible for fleet operators to retrofit their existing vehicles as well. The Bosch subsidiary Mobility Media also markets this solution for private users under the name Drivelog Connect. A smartphone connected to the CCU can display vehicle data, offer tips on fuel-efficient driving, and, in the event of a breakdown, immediately contact a towing service and the garage if required.

1-BBM-21513

A connected car drives more proactively than any person
Information on traffic jams, black ice, and wrong-way drivers is available in the cloud. When combined with infrastructure data from parking garages and charge spots, this provides a broader perspective – the “connected horizon”. As Hoheisel puts it: “In the connected vehicle, the driver can see over the top of the next hill, around the next bend, and beyond.” Because future cars will warn drivers in plenty of time about sudden fog or about a line of cars stopped behind the next bend, driving will be safer. Connectivity also enhances vehicle efficiency. For example, precise data about traffic jams and the road ahead makes it possible to optimize charging management in hybrid and electric vehicles along the selected route. And because the car thinks ahead, the diesel particulate filter can be regenerated just before the car exits the freeway, and not in the subsequent stop-and-go traffic. Connectivity improves convenience as well, as it is a prerequisite for automated driving. It is the only way to provide unhurried braking in advance of construction zones, traffic jams, and accident scenes.

1-CM-21824

Predictive diagnostics cut service times
Along with driving data and information on the vehicle’s surroundings, the connected car also captures data on the operation of individual components. Running this data through sophisticated algorithms permits preventive diagnostics. For example, the data collected from an injection nozzle can be put through distributed algorithms in the cloud and in the vehicle in order to predict the part’s remaining service life. The driver or fleet operator can be notified immediately and an appointment made with the workshop in good time. In this way, it is often possible to avoid expensive repair and down times, especially for large commercial vehicles.

Yet connectivity doesn’t stop at the entrance to the repair shop. Mechanics can use transmitted vehicle data to price spare parts and labor much more quickly. In the future, their repairs will benefit from Bosch augmented reality solutions, which use a tablet computer to provide a sort of X-ray vision. When a mechanic takes the tablet and holds it under the hood, for example, the tablet’s camera image is overlaid with comprehensive additional information and repair instructions for precisely the area being displayed. The mechanic can manipulate the overlaid objects via the touchscreen and call up additional information. This makes poring through service handbooks a thing of the past. A Bosch server provides all the detailed data online.

(Source: Bosch Media)

Death by EV

Some automotive technicians are going to be killed by the high voltages on electric vehicles. I have written many textbooks about automotive technology where I have highlighted safe working practices, but the one I have just completed the script for will save lives. This book is called, ‘Electric and Hybrid Vehicles’, and will be out early in 2016. By the way, we use the term EV to cover all the different types there are such as hybrids and pure-EVs.

Did you know the voltages on some EVs can be several hundred volts, which is almost three time the mains voltage in our houses? The majority of EV batteries are well over 300 volts. If the human body experiences a current of just fifty thousandths of an ampere (50mA, which is not very much) for over two seconds it can be fatal.

Now that I have scared you away from ever touching high voltage components (which are all labelled and usually coloured orange) I would add that working on EVs is perfectly safe! You just need to be trained and know what you are doing. Driving an EV is also perfectly safe and don’t expect poor performance either. My EV will do well over 80 miles per hour (on a private track!) just using the battery and electric motor.

Of course as well as saving lives, the book is packed with really interesting information and technology relating to EVs. For example, whether it is safe to plug in the charging lead in the rain. How most motors on EVs are AC motors but we call them DC motors! The book even covers things like what ‘first responders’ should do if a lithium-ion battery is burning after an accident. The book covers all the requirements for the Institute of the Motor Industry (IMI) awards and accreditations for those who need a qualification. Look out for the amazing eLearning that will also be available soon to support the book.

I have also included a short case study on charging my own EV (actually a PHEV) from solar panels. This may or may not save the planet but in the meantime it does save me money as I can now do a large proportion of my motoring for about 1p a mile.

Here are three more interesting facts to finish on:

A formula-e (fully electric racing car) will accelerate from 0 to 100 kilometres per hour in under 3 seconds

  • The Tesla Model S (a fully electric car) has a range of up to 330 miles
  • In the year 1900, electrically powered cars were the best-selling road vehicles in the USA

Now back to the final proof read of the script!

Direct injection for CNG engines

Introduction

Direct injection is not only something for diesel and gasoline engines. In compressed natural gas (CNG) engines, it could also make cars even more economical and eco-friendly. Driving enjoyment would also be boosted: compared with present systems that use manifold gas injection, it could deliver as much as 60 percent more torque at low rpm, and offer the prospect of an even more dynamic driving experience in the CNG cars of the future. However, there is still no technology for directly injecting natural gas into the combustion chamber. In the Direct4Gas project, researchers now want to develop a direct injection system for monovalent engines, or engines that run exclusively on CNG.

Complying with exacting emissions standards

Even now, there are plenty of good reasons for choosing a CNG engine. The compressed natural gas used in passenger cars is inexpensive, and emissions from the vehicles (and thus also vehicle tax in many countries) are low. But this alternative fuel has much greater potential: CNG is mainly composed of methane, whose chemical composition means that cars powered by natural gas could emit far less CO2 than at present. In combination with modifications to the engine, the saving could be as much as 33 percent over a comparable gasoline-powered car. However, this all depends on combustion processes that are tailored precisely to natural gas. By 2020, newly registered vehicles in the EU will not be permitted to emit more than 95 grams of CO2 per kilometer on average. By 2025, this limit could be even lower. Efficient CNG vehicles can help meet exacting emissions standards, and this not only because they emit less CO2. Emissions of particulate matter are also significantly lower than from gasoline or diesel engines.

Gasoline direct injection points the way forward

Today’s CNG vehicles are generally bivalent, running on gasoline and CNG with engines designed for gasoline direct injection. For CNG operation, they are fitted with an additional manifold injection system for methane. “The problem with this configuration is that neither the combustion process nor the values for efficiency and emissions can be optimized. For this to happen, the CNG – like the gasoline – needs to be injected directly into the combustion chamber,” says Dr. Andreas Birkefeld, the project leader from Robert Bosch GmbH. Because methane behaves differently from gasoline when injected directly, it is important to optimize the combustion process for methane.

Direct4Gas-Infografik_EN_150908

The Direct4Gas researchers and engineers will design samples of a direct injector that satisfies much higher standards than the manifold injection valves used up to now. It will have to be especially robust, gas-tight, and reliable, and meter the CNG very precisely. Modifications to the engine itself are to be kept to a minimum, so that the industry can continue using the same components as for gasoline engines. The project team will equip experimental gas engines with the newly developed injector, and test it in the laboratory and in vehicles. Researchers will also examine mixture formation, ignition, and exhaust-gas treatment and develop specific solutions. Direct injection will also be superior to manifold injection in the low-rpm range that is so important for handling: the researchers estimate that direct injection will increase the amount of torque that can be delivered by as much as 60 percent. This would make the CNG engines of the future significantly more dynamic.

A step toward production-readiness

The long-term objective of the consortium of automotive suppliers and automakers is to create the conditions needed for making the technology ready for production, and the project is an important step toward this goal. The consortium is led by Robert Bosch GmbH. Other partners include Daimler AG and the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS). Umicore AG & Co. KG is an associated partner. Following a resolution of the German Bundestag, Direct4Gas is supported with 3.8 million euros from the Federal Ministry for Economic Affairs and Energy as part of the “Increasing vehicle powertrain efficiency” initiative. The project started in January 2015 and will run until the end of 2017.

(Source: Bosch Media)

ICE, PHEV or Pure-EV

(Internal Combustion Engine, Plug-in Hybrid Electric Vehicle (like my GTE!) or a pure Electric only Vehicle)

I have been playing around with a few figures relating to the overall costs of running these three different vehicles and trying to compare them – it is a difficult task! Here is what I have done so far, comments and ideas are welcome:

=========================

The cost of charging an EV battery depends on the size of the battery, how depleted the battery is and how quickly you charge it. As a guide, charging a pure-electric car from flat to full will cost from as little as £1.00 to £4.00. This is for a typical pure-EV with a 24kWh battery which will offer around 100 miles range.

This means the average cost of ‘fuel’ will be approximately £0.03 per mile. Similar costs will apply to PHEVs and E-REVs, and because the batteries are smaller, it will cost less to charge them. See also the figures in table 2.

In some cases it may be possible to charge overnight and take advantage of cheaper electricity rates. Other options include charging from domestic solar panels. At this time it is calculated that the total cost of ownership of an electric car is similar to an ICE because of the additional purchase costs. However, this will change and if other advantages are included such as congestion charges (currently £11.50 per day in London for ICE but zero for EVs), the EV will be significantly cheaper in the longer term.

Table 1 Comparison of costs

Term, mileage, fuel cost ICE Pure-EV PHEV Notes
Annual mileage 10,000 10,000 10,000
Cost of fuel (£/gallon or £kW/h) £5.70 £0.05 £5.70 / £0.05 Electricity (£/kWh) average standard/cheap/solar used for calculation
Official combined cycle mpg 68 mpg 150 Wh/km 166 mpg Electricity consumption (Wh/km)
‘Real world‘ mpg 50 mpg 175 Wh/km0.28 kWh/mile 100 mpg *1 Real world consumption
Total fuel costs £1,140 £140 £570 (annual miles * fuel cost / mpg)(annual miles * fuel cost * kWh/mile)
Vehicle cost information        
Purchase price £28,000 £34,000 £35,000 Estimates based on current list prices
Plug-in car grant -£5,000 -£5,000 A grant to reduce cost by 25% (up to £5,000)
Net purchase price £28,000 £29,000 £30,000
Depreciation cost/year £8,400 £8,700 £9,000 30% used – this will vary however
Residual value £19,600 £21,300 £21,000
Service, maintenance and repair £190 £155 £190 Based on average of published figures.
Other information        
Vehicle Excise Duty and Registration Fee £30 £0 £0
TOTAL COST £9,760 £8,995 £9,760 Per year

Important note: the figures used in this table are ‘best guesses’ but none-the-less give a reasonable comparison. The bottom line is that the three cars have broadly the same overall total cost even though the Pure-EV and the PHEV have much lower fuel costs. The key factor will be how the depreciation cost of the EVs pan out. However, over subsequent years the fuel savings associated with the EVs will become more significant.

Being able to programme EVs to charge during the night will allow drivers to take advantage of cheaper electricity prices, whilst using any surplus electricity. In addition, the development of smart metering systems which can automatically select charging times and tariffs can also help to manage demand on the grid. The National Grid manages the grid on a second by second basis to ensure that supply and demand are met and to indicate to the market if there is a shortfall or surplus of power.

*1 Very much depends on the length of journey – an average value was used

Free motoring…

…we’ll almost, at least very cheap motoring is the plan!

On the 7th August 2015 I took delivery of the (almost) final part of the puzzle that when put together will result in big savings – I hope. I still need to get the proper charging point together with gadgets to monitor energy use etc., but I am nearly there. Here is my new Golf GTE (from Inchcape in Chelmsford) taking its first charge on my drive:

image

Golf GTE – one of the first in my region

The Golf GTE 1.4 TSI produces 204PS (Pferdestärke, abbreviation of the German term for metric horsepower).  It is a PHEV (plug-in hybrid electric vehicle) 5dr DSG boasting 0–62mph in 7.6 seconds. and up to 166.0 mpg. The electric range is 31 miles and when electric and petrol combine, the total range is 580 miles. The previous data are laboratory figures of course, I will report back on what happens in the real world in due course. However, its performance is very impressive so far. Because the car is a plug-in hybrid it attracted the £5000 government grant. More on overall prices later though because cheap mileage is all very well but initial and running costs still have to be considered.

The other part of my cunning plan involves solar panels (actually photo-voltaic or PV panels) and these will be used to charge the 8.8 kWh lithium-ion battery in 3.75 hours from a domestic mains outlet, or 2.25 hours from a domestic wallbox.

PV panels (a 4kW array) fitted in February (the snow being the clue)

PV panels (a 4kW array) fitted in February (the snow being the clue)

My PV array has saved me buying a lot of electricity and has further resulted in an income. So far this year I have received about £400, by selling the excess energy back to the grid (using what is known as a feed-in tariff). In addition, my electricity bill has reduced as shown in the following chart:

Comparison of grid power used with solar generated and last year's average use (09/08/2015).

Comparison of grid power used with solar generated and last year’s average use (09/08/2015).

As you would expect, we pay much more for the electricity we use than the price we get when selling it (something like 14p per unit when buying and 3p per unit when selling). The way the feed-in tariff works is that the electricity generation company pays us for 50% of the amount generated by the PV panels. So the more we generate the more we get but of course the other advantage is gained because the more of the PV energy we use, the less electricity we purchase. This is where the new car comes in. The plan is that whenever we return home, we will make sure all the available charge in the car’s lithium-iron (Li-on) traction batteries has been used up. This will simply be done by switching the car to full e-mode when 35 miles from home. The car will now only be charged when enough solar energy is available (emergencies excepted of course). I am doing this manually at the moment but it will be automated in due course.

I have just completed a journey, by pure coincidence, to the UK VW headquarters where they have a charge point (well they should have shouldn’t they)! This was about a 170 mile round trip for me. I set off with a fully charged battery and managed to add 20 miles worth of charge while I was there. The car trip computer showed an overall average mpg of 68 – so just under 2.5 gallons. for the journey. My previous car (a modern Golf GTD 2.0ltr) would have done the same at an average of about 48 mpg (about 3.5 gallons). This journey was a good combination of country roads and motorway so probably indicates a good average. I did not try to save fuel or equally I didn’t accelerate/brake rapidly so the figures are probably quite a good start for real-world use. When used in hybrid mode only, the average was about 50 mpg .

I am expecting to win much more on the shorter journeys we do, which will use no petrol or very little. My journey to the office at the IMI for example, is about 42 miles each way. We have a free charging point! My hope therefore is to only use about half a gallon of fuel for the return trip (60 miles on full electric and 25 miles at 50 mpg).

Watch this space, more details to come…

Tom

 

 

 

 

Future of mobility

Bosch and TomTom partner on innovative mapping technology for automated driving

  • High-precision maps are essential for highly automated driving
  • Bosch is using TomTom maps in its automated test vehicles
  • Freeways and freeway-like roads in Germany to be digitized for automated driving by the end of 2015
  • Maps for highly automated driving have to be accurate to decimeter precision
  • Collaboration will result in innovative vehicle positioning concepts

The development of automated driving is a puzzle with many pieces. Together with the Dutch map and traffic provider TomTom, Bosch is getting closer to the complete picture. The two companies have agreed to collaborate in the area of maps for highly automated driving. Under this agreement, TomTom is designing the necessary maps, while Bosch, on the basis of its systems engineering work, is defining the specifications these maps have to meet. Even now, the maps are already being used in the automated vehicles Bosch is testing on certain public roads in Germany (A81) and in the United States (I280). Commenting on the importance of this venture, the Bosch board of management member Dr. Dirk Hoheisel says: “Only with high precision maps will automated driving on freeways be possible from 2020.” And Jan Maarten de Vries, Vice President Automotive at TomTom, adds: “By the end of 2015, we want to have new high-precision maps for automated driving for all freeways and freeway-like roads in Germany.” Road coverage will subsequently be extended to the rest of Europe and North America.

1-CC-21380 1-BBM-21368 1-BBM-21371

Multiple map layers, significantly increased accuracy Maps for highly automated driving and the maps used in current navigation systems differ primarily in two respects. First, accuracy is significantly higher – down to decimeter precision. Second, the map material for highly automated driving consists of multiple layers. The traditional base navigation layer is used to calculate routes from A to B, including the sequence of roads to be driven. The localization layer uses a novel positioning concept providing highly accurate map data, which the automated vehicle uses to accurately calculate its position within a lane. To do this, the vehicle compares its sensed environment with the corresponding information in the localization layer. In this way, the vehicle can accurately define its position relative to the road and its surroundings. On top of the localization layer, the planning layer contains not only attributes such as lane divider types, traffic signs, speed limits, etc., but also 3D information about road geometry, including curves and slopes. With the help of this very detailed lane information, the automated vehicle can decide things such as when and how to change lane.

In highly automated driving, safety and comfort depend crucially on map material that is up to date. For example, up-to-the-minute speed-limit information has to be available instantly. Only then can vehicles select the best proactive driving strategy. In this regard, Bosch and TomTom rely on several elements and services to keep the map data up to date: the TomTom mapping fleet will continue to be regularly on the road, accurately mapping new roads and routes. And to register recent changes on the roads, such as changed lane configurations or new traffic signs, TomTom and Bosch plan to use feedback from fleets of vehicles equipped with the necessary sensors. Information about changed road conditions captured this way will be transferred to a server, verified, and entered in the digital map database. The updated map will then be fed back to the highly automated driving vehicle, enabling it to see effectively beyond its sensors.

Extension of existing, successful partnership For Bosch and TomTom, this collaboration in the area of maps for highly automated driving is an extension of an already existing, successful partnership. For Bosch’s connected horizon, TomTom also provides dynamic map information via their real-time service backend – albeit without any localization layer. In this way, the connected horizon makes it possible to predict the route ahead and adapt driving strategy accordingly. This solution was demonstrated for the first time in 2014, at the IAA Commercial Vehicles trade show in Hanover. The system recognizes potential black spots behind hills, or the start of a traffic jam, at an early stage, and automatically reduces the speed of the vehicle well in good time. This considerably reduces the risk of rear-end collisions. In addition, smoother driving behavior means more comfort for the driver and improved fuel efficiency for the vehicle.

For beer lovers and petrol heads only

images

Old Speckled Hen took its name from an MG car which was used as a run-around for workers in the MG factory. Over years of service, the car became covered in flecks of paint, gaining it acclaim in the town and earned it the nickname “Owld Speckled ‘Un”, translated into Old Speckled Hen for the brown ale first brewed by Morland in 1979 when the brewery was asked by MG to create a commemorative beer for the factory’s 50th anniversary.

logo