What is WLTP and how will it work?

The current lab test – called the New European Driving Cycle (NEDC) – was designed in the 1980s. Due to evolutions in technology and driving conditions, it has become outdated today. The European Union has therefore developed a new test, called the Worldwide Harmonised Light Vehicle Test Procedure (WLTP). The EU automobile industry welcomes the shift to WLTP and has been contributing actively to the development of this new test cycle.

 

Good update here: http://wltpfacts.eu/what-is-wltp-how-will-it-work/

Tesla new autopilot features

Every Tesla vehicle comes standard with full self-driving hardware – enabling the driving experience to be substantially safer than that of a human driver. With their most recent software update, you can now experience our most advanced safety features, including Traffic Aware Cruise Control, Autosteer up to 90mph, Automatic Emergency Braking, and Side-Collision Avoidance.

 https://www.tesla.com/en_GB/videos/autopilot-self-driving-hardware-neighborhood-short

(Source: Tesla)

Automated mobility – Bosch

Automated driving impacts the entire car: its powertrain, brakes, steering, display instruments, navigation, and sensors, as well as connectivity inside and outside the vehicle. The key to success is an in-depth understanding of all vehicle systems. Few automotive suppliers worldwide have as much knowledge in this area as Bosch, in part because the supplier of technology and services manufactures most of the components needed for automated driving listed below:

Connected Horizon: Automated vehicles rely on environmental information – information that goes beyond what sensors can gather. For instance, they need real-time traffic data on congestion and accidents. This can be achieved only by connecting the vehicle to a server, for which Bosch developed its Connected Horizon solution. This system enables a dynamic preview of the upcoming route and corresponding adjustments to driving strategy. Connected Horizon is what allows automated vehicles to think ahead. This is beneficial for the comfort and safety of the driving experience. For instance, connected vehicles are warned in advance of danger spots before a blind bend or hilltop and can ease off the accelerator in preparation.

Electric steering: Fail-safe, electric power steering is a key technology for automated driving. Even in fall-back mode, fail-operational capability allows drivers and automated cars to continue using essential steering functions while maintaining about 50 percent electric steering support in the rare case of a malfunction. This technology will enable automakers to comply with the safety requirements as proposed in the Federal Automated Vehicles Policy documents from the U.S. Department of Transportation and National Traffic Highway Safety Association, for example.

ESP: The electronic stability program also plays a key role when it comes to automated driving. Delegating responsibility for driving to the vehicle places particular demands on safety-critical systems such as the brakes. To retain maximum control over these systems in the event of the failure, redundancy must be built into the system as a safeguard. In this instance, the ESP brake control system and iBooster electromechanical brake booster (see below) can independently brake the vehicle without the driver having to intervene. Bosch offers ESP as a modular concept that offers the right system for all circumstances and requirements.

HMI: Automated driving will change the human-machine interface, and calls for modern concepts for communication between car and driver. The driver must be able to intuitively understand and use the system. With its innovative display instruments, Bosch is already offering promising solutions in this area as well: the TFT instrument cluster, for instance, offers maximum flexibility in processing combined with brilliant clarity. By using head-up displays, Bosch puts information such as speed, navigation prompts, and warnings directly in the driver’s field of view. This information is superimposed on the vehicle’s surroundings in such a way that the two seem to blend seamlessly at a distance of around two meters ahead of the vehicle.

iBooster: With the iBooster, Bosch has developed a vacuum-independent, electromechanical brake booster that meets the requirements for modern braking systems. It can be used in all powertrain concepts and is especially well suited for hybrid and electric vehicles. In the iBooster, the actuation of the brake pedal is recorded by the built-in pedal-travel sensor and transmitted to the control unit. The control unit calculates the triggering signal for the electric motor, which uses a two-stage transmission to convert its torque into the required power assistance. In a standard master cylinder, the power provided by the booster is transformed into hydraulic pressure.

Maps: Without high-resolution, up-to-date maps, there can be no automated driving. The maps provide vehicles with information about changing traffic situations, such as traffic jams or construction, that fall outside the area on-board sensors can monitor. Bosch’s radar and video sensors capture and transmit important real-time traffic data for the creation of high-resolution maps for automated driving.

Lidar sensor: In addition to radar, video, and ultrasonic sensors, Bosch also uses lidar sensors in its automated test vehicles. The various sensor principles complement each other very well and combine data to ensure reliable environment recognition. Automated vehicles use this data to derive their driving strategy. Bosch views lidar sensors as an important addition to its portfolio.

 

Radar sensor: As one of several sensor principles, radar sensors provide important 360-degree information about their surroundings within a distance of up to 250 meters for automated vehicles. A radar sensor’s main task is to detect objects and to measure their speed and position relative to the movement of the vehicle. Furthermore, Bosch radar sensors send frequency-modulated radar waves measuring between 76 and 77 GHz via a transmitting antenna. These waves are reflected by objects in front of the vehicle. The relative speed and distance of objects are measured using the Doppler effect and the delay generated by the frequency shifts between the emitted and received signal. Comparing the amplitude and phase of the measured radar signals makes it possible to draw a conclusion about the position of the object.

Ultrasonic sensor: Ultrasonic sensors are needed in automated driving, primarily for close-range environment recognition of up to 6 meters and at low speeds, such as during parking. The sensors employ the sonar technique, which bats, for example, also use in navigation. They emit short ultrasound signals that are reflected by obstacles. The echoes are registered by the sensors and analysed by a central control unit.

Video sensor: With a 3D measurement range of over 50 meters, the Bosch stereo video camera provides important optical information about the vehicle’s surroundings. Each of the two highly sensitive image sensors, equipped with colour recognition and complementary metal oxide semiconductor (CMOS) technology, has a resolution of 1280 by 960 megapixels and is capable of processing extreme contrasts. The distance between the optical axes of the two lenses is just 12 centimetres. The stereo video camera captures objects spatially and calculates their distance, plus it identifies clear spaces. The information from the sensor is combined with data from other sensor principles to generate a model of the surroundings for automated vehicles.

Source: Bosch Media, Bosch Pictures

“Just driving” was yesterday – the personal assistant is tomorrow

Bosch’s new show car shows how quickly the future of driving is becoming a reality

  • Connected, automated, and personalized: Bosch has a new take on mobility and is turning the car into people’s third living space
  • New user interfaces ensure more security, more comfort, and fewer distractions when driving
  • Cars are becoming personal assistants on four wheels

Stuttgart – My home, my workplace, my car: connectivity is turning cars into a third living space alongside people’s own home and their office. Bosch is showing what that actually means, and what it will be like to drive a car in the future, with its new show car. It offers intuitive operation and is always online, connected with its surroundings, and driving itself. “The connectivity of cars with their surroundings and with the internet is a key challenge for future mobility,” says Dr. Dirk Hoheisel, member of the board of management of Robert Bosch GmbH. Automated and connected functions in cars not only make each journey safer and more comfortable, they also turn the car into a truly personal assistant. “In this way, we are making connectivity a personal experience and giving people more time for actual living, even while driving their car,” Hoheisel says.

Intelligent display and user interfaces

More individuality and easier operation become apparent as soon as you get into the show car. The driver monitor camera recognizes the driver and adjusts the steering wheel, mirror, and temperature accordingly. In fact, as if by magic, the car also sets the colour scheme of the display and automatically loads appointments, favourite music, the latest podcasts, and the navigation destination that the driver programmed while still at the kitchen table. The camera is always alert during driving, too, especially when the driver’s eyes get a little heavy. It detects fatigue and microsleep at the wheel, both of which are often the cause of serious accidents. It is usually possible to spot the onset of these early on from movements of the eyelids. The system determines the driver’s ability to concentrate, or degree of tiredness, and issues a warning if necessary. This makes driving even safer. What is more, the driver tiredness detection system constantly monitors the driver’s steering behaviour so it can intervene directly in the event of abrupt movements.

The human machine interface (HMI) turns cars into personal assistants on four wheels. This interface between people and vehicles provides drivers with important information when it is needed and is an attentive alert companion in every situation. In the future, thanks to more personalized communication, automated and connected functions will offer intuitive, comfortable, and safe operation, and drivers will be able to set them to meet their personal requirements – whether in a traffic jam, in urban traffic, or on a family outing. To this end, the show car presents gesture control with haptic feedback. It uses ultrasonic sensors that produce a noticeable resistance whenever the driver performs a gesture in precisely the area that the camera records. This makes gesture control even easier to use and less distracting for drivers, since they can change the information on the display, accept phone calls, or call up a new playlist without touching it. An innovative touch display in the show car also makes it safer and more convenient to use fingertip control. The display provides a haptic response by vibrating each time the driver’s fingertips touch it. This means drivers can sense different structures that feel like real buttons on what is in fact a flat surface. That way, they can easily find the desired function on the display, for instance to adjust the volume of the music, without looking away from the road.

Mobility with smart connectivity: Cars are turning into people’s third living space

The show car also demonstrates how cars are turning into people’s third living space thanks to automation and connectivity. According to Bosch’s “Connected car effect 2025” study, automated driving could enable people who drive a lot to make better use of some 100 hours of their time each year. Once the car detects that automated driving is possible and the driver agrees to hand over control, the car takes over – safely and smoothly. Since the show car is an active part of the internet of things, drivers can carry their digital lives over into their car; perhaps sending e-mails to the office colleagues or video chatting with friends. All this is possible in the time automated driving saves. Flexible display concepts really come into their own here. Drivers can simply gesture to seamlessly switch like magic between various displays of e-mails, chats, videos, and automated and connected functions.

Connected with the smart home, the repair shop, and the whole world

What about planning your evening meal when on the road? Connectivity can help here, too – this time with the smart home. Mykie, the Bosch kitchen assistant, can suggest recipes online in the car. A glance from the car into the connected refrigerator will show whether the necessary ingredients are ready at home. Connectivity between cars and smart homes comes into play even before the journey starts: as soon as drivers enter the car, a display shows them the status of their own home. Has a window still been left open? Is the door locked? It takes just a gesture or a fingertip on the display to automatically lock the doors and monitor the status at home. Moreover, the connected car is also linked to the repair shop. It notifies drivers when an inspection is due, it schedules an appointment at the repair shop upon request, and it can ensure the necessary spare parts are in stock when it gets there. This level of comfort extends to parking: in Bosch’s community-based parking service, cars use the sensors in parking assistants to report available curbside spaces. This information is sent via the cloud to a digital parking map and provided to other vehicles.

Source: Bosch Media

Datacentres: In the driving seat of the connected car revolution

Here is an interesting article by

(16 December 2016, 11:11 a.m.) on the IOT site:

http://www.iottechnews.com/news/2016/dec/16/datacentres-driving-seat-connected-car-revolution/

When I started driving, cars were generating very little data. They got you from A to B without the addition of gadgets or gizmos. Connected cars as we know them today were certainly not a thing.

Today many vehicles are computers in their own right, connected to the Internet and data is flooding in. In fact, it’s estimated that a single connected car uploads 25GB of data to the cloud per hour.

(c)iStock/aleksle

With a quarter of a billion smart vehicles set to be on the road by 2020, that’s over 6 billion GBs every 60 minutes.

Such vast amounts of data are only going to continue growing in the years to come, putting the automotive industry in a leading position within the Internet of Things (IoT).

But at the same time a growing number of challenges and pressures are becoming apparent – namely the need to process, analyse and store all this new information.

As a result, datacentres are fast becoming the solution to the automotive sector’s rapid data growth, but how exactly are these data halls driving the connected car revolution forward?

From connected cars to autonomous autos

For the past few years, connected cars have been the hype of the sector.

By ‘connected’, we mean vehicles that have access to the internet in some form; cars that are often spotted with sensors that enable machine to machine (M2M) and machine to human (M2H) communication. As already noted, this level of connectivity generates substantial data sets.

The industry is continuing to innovate rapidly, and before connected cars even become commonplace, conversations are shifting to autonomous (or self-driving) vehicles – the futuristic Hollywood vision realised.

Here we’re talking about vehicles that operate without a human driver. While this could well give rise to many transportation efficiencies (reduced driving costs, improved convenience etc.) it will also undoubtedly bring about a more drastic automotive data revolution.

If one connected car today generates 25 GB of data an hour, one autonomous car in the future is likely to generate ten times that information.

On top of all the data a connected car generates, self-driving vehicles will have to be truly intelligent – learning how to their ‘drivers’ like to drive, sensing the physical environment around them, broadcasting location data and interacting with other vehicles and objects to traverse the roads safely.

By producing data on data in this way, autonomous cars will require even quicker analysis and bring entirely new elements of machine learning to the mix.

Which means beyond M2M/M2H communication we must also consider vehicle to vehicle (V2V), vehicle to everything (V2X), vehicle to infrastructure (V2I) vehicle to person (V2P) and vice versa (P2V).

Driving datacentre demand

The resulting complexity and scale of automotive data sets means more and more automotive giants are recognising the need for complex computing to drive their businesses (and vehicles) forward.

HPC – and the datacentre industry as a whole – sits in the driving seat of the intelligent automotive revolution

In turn, this has resulted in an exponential growth in the number of customers from the automotive industry turning to external data centre providers to meet their Big Data and High Performance Computing (HPC) demands.

The need for scalable, secure HPC datacentre solutions is therefore being felt keenly. For many auto-companies, these kind of data hubs are not necessarily those on their doorstep, and IT decision makers are looking to colocation datacentre providers to support their HPC operations, by supplementing compute capacity and improving operational costs.

In order to support the rapid innovation the automotive industry is showing at present, such campuses must present an ‘HPC-ready’ solution – offering the expertise to support the management of information loads as quickly, efficiently and successfully as the automotive experts that have been handling complex vehicle data for decades.

Innovating in Iceland

More often than not, these are remote facilities with the power infrastructure, resiliency levels and computing resources needed to process HPC loads cost-effectively. Moving automotive HPC workloads to campuses with inherent HPC-ready capability gives automotive manufacturers the medium and high power computing density required at significantly lower energy costs.

Ultimately that enables the ability to gain more insight from more data, and moves us closer to the benefits of autonomous driving.

A number of automotive leaders have recognised these benefits, and are already reaping the rewards. One such manufacturer is Volkswagen, which recently announced the migration of one megawatt of compute-intensive data applications to Verne Global’s Icelandic campus in order to support on-going vehicle and automotive tech developments.

Likewise, BMW is a well-established forward-thinker in this area, having run portions of its HPC operations – those responsible for the iconic i-series (i3/i8) vehicles, and for conducting simulations and computer-aided design (CAD) – from the same campus since 2012.

These automotive leaders consider Iceland an optimal location for their HPC clusters – not only for the energy and cost efficiencies it delivers, but the opportunity it allows them to shift their focus from time-intensive management of the technical compute requirements of their day-to-day work to what’s really important: continued automotive innovation.

Even so, wherever automotive data is stored, analysed and understood one thing is for sure: HPC – and the datacentre industry as a whole – sits in the driving seat of the intelligent automotive revolution.

It will advance our understanding of auto-tech, smarten our driving behaviours and ultimately carve a path to the coveted driverless and connected car technologies that will radically change the way we travel into the future.

AI in self-driving cars – sci-fi no longer

Intelligent machines powered by artificial intelligence (AI) computers that can learn, reason and interact with people and the surrounding world are no longer science fiction. Thanks to a new computing model called deep learning using powerful graphics processing units (GPUs), AI is transforming industries from consumer cloud services to healthcare to factories and cities.

A great article from Bosch, more here:

http://blog.bosch-si.com/categories/mobility/2017/01/ai-self-driving-cars-nvidia-bosch/

 

Vehicle Technology and Aviation Bill

A license to practice in general in the automotive service and repair industry is essential in my opinion. However, we are more likely to have success with this in connection with Electric Vehicles (includes all hybrids and variants). I fully support the IMI and the work they are doing to achieve this:

VW Golf GTE (PHEV)
The following is a brief from the Institute of the Motor Industry.
Making the most of electric vehicles – Infrastructure, skills, and safety.

The previous Secretary of State said, ‘The UK is a world leader in the uptake of low emission vehicles and our long term economic plan is investing £600 million by 2020 to improve air quality, create jobs and achieve our goal of every new car and van in the UK being ultra–low emission by 2040.’

The Society of Motor Manufactures and Traders (SMMT) and KPMG have forecast that the overall economic and social benefit of electric, connected and autonomous vehicles could be in the region of £51billion per year. The estimates indicate 320,000 additional jobs, and the potential to reduce serious roadside accidents by 25,000 casualties per year, which would save the NHS £24m by 2030.

The elimination of 40,000 deaths and 100,000s of respiratory illnesses caused by air pollution from diesel and petrol motor engines will increase this saving significantly.

The IMI believes that to achieve the Governments aims and reap the predicted economic and environmental benefits there is a need for a holistic approach. Government must address all the infrastructure issues.

The main focus of the VTAB is charging infrastructure

The IMI agrees that UK needs to have consistent and sustainable EV charging facilities across the country. There are currently 11,840 charge points across the UK. These are segmented into three categories slow charge (6 to 8 hours), fast charge (3 to 4 hours), and rapid charge (30 to 60 minutes). In addition, Professor Jim Saker of the University of Loughborough points out that the New Automotive Industry Growth Team project have indicated there are only two ways forward as regards to the future power train of vehicles; and that is Electric Vehicles and (Hydrogen) Fuel Cell Electric Vehicles (FCEV). Currently however there are only 7 hydrogen filling stations in the UK. Professor Saker suggests that thousands more are needed to entice the public to make the switch to FCEVs en masse.

Issues the Bill does not address

Skills gap and competition issues
A problem will come from the skills gap facing the industry. A recent study conducted on behalf of the IMI showed that 81% of independent garages found it difficult to recruit technicians with the skills and competences to undertake work on technologically advanced vehicles, such as hybrid and electric cars. Out of 183,869 vehicle technicians in the UK only 2,000 are qualified on EVs and these are all employed in manufactures dealerships.

The lack of competition will exasperate the issue of the skills gap that would be taking place in the market. Manufacturers will train technicians and provide them with the equipment to repair EV and FCEV; this will lead to a group of skilled technicians who can repair the modern vehicles and a large percentage of technicians who have only been trained on the old technology.

This will mean that the market will fail to open up because of high repair and insurance costs. ULEV insurance costs are up 50% more expensive than petrol and diesel because of the skills shortage.

Government Investment in training
With major problems over recruitment and large skills shortages within the sector it is clear that unless a proactive strategy is undertaken the UK will not be able to support the growth of low carbon emission vehicles. The IMI has called for a modest investment of £30 million to assist the independent sector to train the required number of people.

Additional focus for the VTAB

Safety a risk to life and the reputation of the technology
The battery pack on a plug-in hybrid/electric vehicle carries up to 600v direct current. Manufacturers have taken the necessary precautions to ensure that the vehicles are safe in their day-to-day use. However, the risk of untrained vehicle technicians attempting to repair hybrid vehicles in particular is high as many of the components (other than the electric motor) are similar to that of standard combustion engines. Any technician making these assumptions puts their lives and the lives of others at risk.

To put this into perspective a UK household runs on 240v alternating current. In order legally conduct any electrical work on the premises the electrician has to be licenced under the NiCEIC BS 7671 scheme. Yet, no such licensing exists for electrically powered vehicles. Without an equivalent licence how could an automotive technician work on a faulty charging point or vehicle at the home of the vehicle owner?

Licence to practise
The Government should make it illegal for unqualified technicians to work on EV and FCEV cars from 2017.

The Government should mandate the IMI, along with the Health and Safety Executive to maintain the register of licenced technicians
.
Questions for the Minister

1. It is clear that the introduction of alternative fuel cars has the potential to reduce emissions and save lives (9,500 deaths in London associated with pollution, Kings College London study , 2015), as will the introduction of autonomous vehicles (25,000 according to KPMG). However, does the minister agree that introducing these advanced technological systems without the necessary legislation or licensing in place to ensure those that are working on these vehicles can repair the vehicles safely could cause avoidable injuries and fatalities?

2. Is the Minister aware that sales of electric vehicles have risen by 31% in the last year, but out of 183,869 technicians working on cars in the UK only 2,000 are currently qualified to work on the high voltage systems of electric vehicles, all of whom work solely in manufacturers’ dealerships?

3. If he does know can he say what plans the government has got to ensure the necessary skills are developed in the wider service & repair sector to maintain Electric and Hybrid vehicles safely and at a reasonable cost for consumers in the future?

4. Is the minister aware that insurance premiums for electric vehicles are up to 30% higher than for equivalent petrol or diesel models, and that Thatcham Research Ltd says this is due to the cost of repairs, the complexity of the cars, and there being fewer appropriate repairers driving competition?

5. Is the Minister aware of the very stark difference in the technology in electric vehicles compared to petrol powered cars, effectively the dawn of a second era in automotive technology, and the potential danger to an unqualified individual attempting to repair a machine that contains up to 600DC volts, which is potentially lethal?

6. Will the Minister meet with representatives from the Institute of the Motor Industry, the industry’s Professional Body, who are working closely with manufactures like BMW and Mitsubishi, to hear their case for a licence for professional technicians working on EVs, to protect the workers and to encourage businesses to invest in building the skills base required to support the exponential growth of electric and hybrid vehicles expected in the coming years?

7. Has the Minister calculated the potential savings for the NHS from the switch by drivers to ULEVs from diesel and petrol cars, and have these been factored into the investment decisions outlined in the VTAB?

SAE standard for wireless charging

Electrified powertrains, specifically Battery Electric and Plug-In Electric (BEV/ PHEV) vehicles are projected internationally to become more prevalent in production due to environmental factors (such as CO2 emissions), regulations (such as the Greenhouse Gas and the California ZEV Mandate) and the increasing price of fossil fuels. The main benefits of electrified powertrains are eliminating or significantly reducing local emissions while increasing the overall well-to-wheels efficiency.

Standardized Wireless Power Transfer (WPT) through wireless charging allows the BEV/ PHEV customer an automated and more convenient and alternative to plug-in (conductive) charging. Essentially the customer simply needs to park into a SAE J2954 compatible parking space (e.g., residential garage or parking structure) in order to charge the vehicle.

More details here: http://standards.sae.org/j2954_201605/